каталог статей |
РџРѕРёСЃРє:
пример: сотовые телефоны расширенный поиск
Наука и образование » Физика, математика » Содержание и значение математической символики

Содержание и значение математической символики

Курсовая работа

Выполнила студентка факультета математики 4 курс 4 группа Клочанова Ольга Михайловна

Российский государственный педагогический университет им. А.И. Герцена

Санкт-Петербург

2002

Введение.

История науки показывает, что логическая структура и рост каждой математической теории, начиная с определенного этапа ее развития, становятся все в большую зависимость от использования математической символики и ее усовершенствования.

Когда индийцы в V веке н. э. ввели знак нуля, они смогли оставить поразрядную систему счисления и развить абсолютную позиционную десятичную систему счисления, превосходство которой при счете если и не осознают, то повседневно используют сотни миллионов людей. Алгебра и аналитическая геометрия обязаны многим тому, что Виет и Декарт разработали основы алгебраического исчисления. Введенные Лейбницем обозначения производной и интеграла помогли развить дифференциальное и интегральное исчисление; задачи на вычисление площадей, объемов, работы силы и т. п., решение которых раньше было доступно только первоклассным математикам, стали решаться почти автоматически. Благодаря этому обозначения Лейбница получили широкое распространение и проникли во все разделы науки, где используется математический анализ.

Пример с обозначением производной и интеграла особенно ярко подтверждает правильность замечания Л. Карно, что в математике «символы не являются только записью мысли, средством ее изображения и закрепления, – нет, они воздействуют на самую мысль, они, до известной степени, направляют ее, и бывает достаточно переместить их на бумаге, согласно известным очень простым правилам, для того, чтобы безошибочно достигнуть новых истин».

В чем заключено объективное содержание математической символики? Чем объясняется значение символики в математике?

Математические знаки служат в первую очередь для точной (однозначно определенной) записи математических понятий и предложений. Их совокупность – в реальных условиях их применения математиками – составляет то, что называется математическим языком.

Использование знаков позволяет формулировать законы алгебры, а также и других математических теорий в общем виде. Примером могут послужить формулы той же алгебры: (a+b)2 = a2 + 2ab + b2

В С…1,2= Рё С‚.Рї.

Математические знаки позволяют записывать в компактной и легкообозримой форме предложения, выражение которых на обычном языке было бы крайне громоздким. Это способствует более глубокому осознанию их содержания, облегчает его запоминание.

Математические знаки используются в математике эффективно и без ошибок, когда они выражают точно определенные понятия, относящиеся к объектам изучения математических теорий. Поэтому, прежде чем использовать в рассуждениях и в записях те или иные знаки, математик старается сказать, что каждый из них обозначает. В противном случае его могут не понять.

В связи со сказанным необходимо подчеркнуть следующее. Математики не всегда могут сказать сразу, что отражает тот или иной символ, введенный ими для развития какой-либо математической теории, средствами которой можно решать практически важные задачи. Сотни лет математики оперировали отрицательными и комплексными числами и получали с их помощью первоклассные результаты. Однако объективный смысл этих чисел и действий с ними удалось раскрыть лишь в конце XVIII и в начале XIX века. Лейбниц ввел символы dx и dy, развил дифференциальное исчисление и с помощью правил последнего показал исключительную оперативную силу этих символов. Однако Лейбниц не выявил объективного смысла знаков dx и dy; это сделали математики XIX века.

Знаки и системы знаков играют в математике роль, весьма сходную с той, какая в более широких сферах познания и практической деятельности людей принадлежит обычному разговорному языку. Подобно обычному языку, язык математических знаков позволяет обмениваться установленными математическими истинами, налаживать контакт ученых в совместной научной работе.

Решающим, однако, является то, что язык математических знаков без обычного языка существовать не может. Обычный (естественный) язык содержательнее языка математических знаков; он необходим для построения и развития языка математических знаков. Язык математических знаков только вспомогательное средство, присоединяемое к обычному языку и используемое в математике и в областях, где применяются ее методы.

Возможность использования языка знаков в математике обусловлена особенностями предмета ее исследований – тем, что она изучает формы и отношения объектов реального мира, в известных границах безразличные к их материальному содержанию. Существенна при этом и специфика математических доказательств. Математическое доказательство состоит в построении цепи высказываний, начальным звеном которой являются истинные исходные предложения, конечным – доказываемое утверждение. Промежуточные звенья цепи получаются в конечном счете из начального и соединяются с ним и конечным звеном с помощью законов логики и правил логического вывода. Если исходные утверждения записаны в символической форме, то доказательство сводится к их «механическим» видоизменениям.

Целесообразность, а в наше время и необходимость – использования языка знаков в математике обусловлена тем, что при его помощи можно не только кратко и ясно записывать понятия и предложения математических теорий, но и развивать в них исчисления и алгоритмы – самое главное для разработки методов математики и ее приложений. Достичь этого при помощи обычного языка если и возможно, то только в принципе, но не в практике.

Достаточная оперативность символики математической теории существенно зависит от полноты символики. Это требование состоит в том, что символика должна содержать обозначения всех объектов, их отношений и связей, необходимые для разработки алгоритмов теории, позволяющих решать любые задачи из классов однотипных задач, рассматриваемых в этой теории.

Оперирование математическими знаками есть идеализированный эксперимент: он в чистом виде описывает то, что имеет место или может быть (приближенно или точно) реализовано в действительности. Только поэтому оперирование математическими знаками способно служить открытию новых математических истин.

Решающей силой развития математической символики является не «свободная воля» математиков, а требования практики математических исследований. Именно реальные математические исследования помогают математикам в конце концов выяснить, какая система знаков наилучшим образом отображает структуру рассматриваемых количественных отношений, в силу чего может быть эффективным орудием их дальнейшего изучения.

§1. Введение нуля и развитие позиционной десятичной системы счисления.

Интуитивное представление о числе, по-видимому, так же старо, как и само человечество, хотя с достоверностью проследить все ранние этапы его развития в принципе невозможно. Прежде чем человек научился считать или придумал слова для обозначения чисел, он, несомненно, владел наглядным, интуитивным представлением о числе, позволявшим ему различать одного человека и двух людей или двух и многих людей.

Названия чисел, выражающие весьма абстрактные идеи, появились, несомненно, позже, чем первые грубые символы для обозначения числа объектов в некоторой совокупности. В глубокой древности примитивные числовые записи делались в виде зарубок на палке, узлов на веревке, выложенных в ряд камешков, причем подразумевалось, что между пересчитываемыми элементами множества и символами числовой записи существует взаимно однозначное соответствие. Но для чтения таких числовых записей названия чисел непосредственно не использовались. Ныне мы с первого взгляда распознаем совокупности из двух, трех и четырех элементов; несколько труднее распознаются на взгляд наборы, состоящие из пяти, шести или семи элементов. А за этой границей установить на глаз их число практически уже невозможно, и нужен анализ либо в форме счета, либо в определенном структурировании элементов. Счет на бирках, по-видимому, был первым приемом, который использовался в подобных случаях: зарубки на бирках располагались определенными группами. Очень широко был распространен счет на пальцах, и вполне возможно, что названия некоторых чисел берут свое начало именно от этого способа подсчета.

Важная особенность счета заключается в связи названий чисел с определенной схемой счета. Например, слово «двадцать три» – не просто термин, означающий вполне определенную (по числу элементов) группу объектов; это термин составной, означающий «два раза по десять и три». Здесь отчетливо видна роль числа десять как коллективной единицы или основания; и действительно, многие считают десятками, потому что, как отметил еще Аристотель, у нас по десять пальцев на руках и на ногах.

Система счисления, которой мы в основном пользуемся сегодня, десятичная позиционная. Десятичная, так как ее основание 10. Основанием позиционной системы счисления называется возводимое в степень целое число, которое равно количеству цифр, используемых для изображения чисел в данной системе счисления. Основание показывает также, во сколько раз изменяется количественное значение цифры при перемещении ее на соседнюю позицию. В позиционных системах счисления количественный эквивалент (значение) цифры зависит от ее места (позиции) в записи числа

Десятичная система характеризуется тем, что в ней 10 единиц какого-либо разряда образуют единицу следующего старшего разряда. Другими словами, единицы различных разрядов представляют собой различные степени числа 10.

 Десятичной позиционной предшествовали другие, основанные на различных принципах, системы счисления. Так примером непозиционной системы (то есть такой системы, где количественный эквивалент каждой цифры не зависит от ее положения (места, позиции) в записи числа) может служить нумерация, используемая древними греками. Эта система относится к числу алфавитных. Первыми восемью буквами греческого алфавита (с добавлением «архаичной» буквы =вау, имевшей значение 6 обозначались числа от единицы до девяти, следующими восемью с добавлением =коппы, имевшей значение 90, - десятки от 10 до 90, следующими восемью с добавлением =сампи, означавшей 900, - сотни от 100 до 900, наконец, тысячи от 1000 до 9000 обозначались так же, как единицы, но со штрихом внизу: ,a означала 1000. Для того чтобы отличать числа от слов, над ними ставилась черточка. Так, число 1305 греки записывали ,. От греческой нумерации ведет свое происхождение древнерусская. Пример другой непозиционной системы дает употребляемая поныне римская нумерация.

Мы пользуемся ею для обозначения юбилейных дат, для нумерации некоторых страниц книги (например, страниц предисловия), глав в книгах, строф в стихотворениях и т. д. В позднейшем своем виде римские цифры выглядят так: I=1; V=5; X=10; L=50; С=100; D=500; M=1000.

О происхождении римских цифр достоверных сведений нет. Цифра V могла первоначально служить изображением кисти руки, а цифра Х могла составиться из двух пятерок. Точно так же знак для 1000 мог составиться из удвоения знака для 500 (или наоборот).

Все целые числа (до 5000) записываются с помощью повторения вышеприведенных цифр. При этом если большая цифра стоит перед меньшей, то они складываются, если же меньшая стоит перед большей (в этом случае она не может повторяться), то меньшая вычитается из большей. Например, VI=6, т.е. 5+1, IV=4, т.е. 5-1, XL=40, т е. 50-10, LX=60, т.е. 50+10. Подряд одна и та же цифра ставится не более трех раз: LXX=70; LXXX=80; число 90 записывается ХС (а не LXXXX).

Первые 12 чисел записываются в римских цифрах так: I, II, III, IV, V, VI, VII, VIII. IX, X, XI, XII.

Примеры: XXVIII=28; ХХХIХ=39; CCCXCVII=397; MDCCCXVIII=1818.

Выполнение арифметических действий над многозначными числами в этой записи очень трудно. Тем не менее римская нумерация преобладала в Италии до 13 века, а в других странах Западной Европы - до 16 века.

Древние египтяне использовали десятичную непозиционную систему счисления. Единицу обозначали одной вертикальной чертой, а для обозначения чисел, меньших 10, нужно было поставить соответствующее число вертикальных штрихов. Чтобы записанные таким образом числа было легко узнавать, вертикальные штрихи иногда объединялись в группы из трех или четырех черт. Для обозначения числа 10, основания системы, египтяне вместо десяти вертикальных черт ввели новый коллективный символ, напоминающий по своим очертаниям подкову или крокетную дужку. Множество из десяти подковообразных символов, т.е. число 100, они заменили другим новым символом, напоминающим силки; десять силков, т.е. число 1000, египтяне обозначили стилизованным изображением лотоса. Продолжая в том же духе, египтяне обозначили десять лотосов согнутым пальцем, десять согнутых пальцев – волнистой линией и десять волнистых линий – фигуркой удивленного человека. В итоге древние египтяне могли представлять числа до миллиона. Так, например, с помощью коллективных символов и повторений уже введенных символов число 6789 в иероглифических обозначениях можно было бы записать как

Самые древние из дошедших до нас математических записей высечены на камне, но наиболее важные свидетельства древнеегипетской математической деятельности запечатлены на гораздо более хрупком и недолговечном материале – папирусе. Два таких документа – папирус Ринда, или египетского писца Ахмеса (ок. 1650 до н.э.) и московский папирус, или папирус Голенищева (ок. 1850 до н.э.) – служат для нас основными источниками сведений о древнеегипетских арифметике и геометрии. В этих папирусах более древнее иероглифическое письмо уступило место скорописному иератическому письму, и это изменение сопровождалось использованием нового принципа обозначения чисел. Группа одинаковых символов заменялись более простой по начертанию пометой или знаком, например, девять записывалось как  вместо , а семьсот как  вместо . В этой записи число 6789 имело вид , причем знаки более высокого порядка располагались справа, а не слева.

Введение египтянами цифровых обозначений ознаменовало один из важных этапов в развитии систем счисления, так как дало возможность существенно сократить записи.

Основные недостатки непозиционных систем нумерации - трудности с изображением произвольно больших чисел и, главное, более сложный, чем в позиционных системах, процесс вычислений. (Последнее, правда, облегчалось употреблением счетных досок – абаков, так что изображение чисел было необходимо лишь для конечного результата).

Крупным шагом вперед, оказавшим колоссальное влияние на все развитие математики было создание позиционных систем счисления. Первой такой системой стала вавилонская шестидесятеричная система счисления, в которой появился знак , указывающий на отсутствие разряда, выполняющего роль нашего нуля. Концевой нуль, который позволял различать, например, обозначения для 1 и 60, у вавилонян отсутствовал. Удобство вычислений в шестидесятеричной системе сделало ее популярной у греческих астрономов. К. Птолемей (II в. н.э.) при вычислениях в шестидесятеричной системе пользуется знаком «0» для обозначения отсутствующих разрядов как в середине, так и в конце числа (0, омикрон – первая буква греческого слова ovden-ничто). О вавилонской шестидесятеричной системе нам напоминает деление часа на 60 минут и минуты на 60 секунд, а также деление угла равного четырем прямым, на 360 градусов. Неудобство шестидесятеричной системы счисления в сравнении с десятичной – необходимость большого количества знаков для обозначения индивидуальных цифр (от 0 до 59), более громоздкая таблица умножения.

Создание десятичной позиционной системы счисления, одного из выдающихся достижений средневековой науки, - заслуга индийских математиков. Позиционные десятичные записи чисел встречаются в Индии с VI в. Так, в дарственной записи 595 года встречается запись числа 346 цифрами брахми є(є-3, -4, -6). Первую достоверную запись нуля в виде кружочка мы находим в изображении числа 270 в настенной записи из Гвалиора, относящейся к 876г. Иногда ноль обозначался точкой. Неясно, был ли нуль собственным изобретением индийцев; возможно, они познакомились с ним по сочинениям александрийских астрономов.

Вот какова эволюция написания индийских цифр.

§2. Символика Виета и Декарта и развитие алгебры.

2.1 Развитие алгебры до Ф. Виета.

2.1.1 Алгебра греков.

Считается, что эллины заимствовали первые сведения по геометрии у египтян, по алгебре - у вавилонян.

В древнейших египетских источниках папирусе Райнда и Московском папирусе - находим задачи на «аха» (термин «аха» означает «куча», «груда»). Имеется в виду некоторое количество, неизвестная величина, подлежащая определению) соответствующие современным линейным уравнениям, а также квадратным вида ах2 = b. В вавилонских клинописных текстах имеется большое число задач, решаемых с помощью уравнений и систем первой и второй степеней, которые записаны без символов, но в специфической терминологии. В этих текстах решаются задачи, приводящие к трехчленным квадратным уравнениям вида ах2 - bх = с или х2 - рх = q. В задачах на «аха» можно обнаружить зачатки алгебры как науки о решении уравнений.

Но если вавилоняне за два тысячелетия до нашей эры умели числовым путем решать задачи, связанные с уравнениями первой и второй степеней, то развитие алгебры в трудах Евклида (365 - ок. 300 гг. до н. э.), Архимеда (287-212 гг. до н. э.) и Аполлония (ок. 260-170 гг. до н. э.) носило совершенно иной характер: греки оперировали отрезками, площадями, объемами, а не числами. Их алгебра строилась на основе геометрии и выросла из проблем геометрии. В XIX в. совокупность приемов древних получила название геометрической алгебры.

В качестве примера геометрической алгебры греков рассмотрим решение уравнения х2+ ax = b2.

Античные математики решали эту задачу построением и строили искомый отрезок так, как показано на рисунке.

В 

 На заданном отрезке АВ (равном a) строили прямоугольник AM со сторонами (а + х) и x, равновеликий данному квадрату (b2), таким образом, чтобы избыточная над прямоугольником AL (равная ах) площадь ВМ была квадратом, по площади равным х2. Сторона этого квадрата и давала искомую величину х. Такое построение называли гиперболическим приложением площади.

Далее, полагая задачу решенной, делили АВ пополам точкой С, на отрезке LM строили прямоугольник MG, равный прямоугольнику ЕС. Тогда прямоугольник AM будет разностью квадратов DF и LF. Эта разность и квадрат LF известны, поэтому по теореме Пифагора можно получить квадрат DF. После этого находили величину DC (равную Ѕa + x) и DB (равную х).

Геометрическое построение в точности соответствует преобразованию, с помощью которого в современных обозначениях решается уравнение указанного типа:

b2 = ax + х2 = –

Конечно же, при таких построениях отыскивались только положительные корни уравнений: отрицательные числа появились в математике значительно позже.

С помощью геометрии древним удавалось также доказывать многие алгебраические тождества. Но каковы эти доказательства! Они безупречны в отношении логики и слишком громоздки. Вот как формулирует Евклид теорему, выражающую тождество (а + b)2 = a2 + 2аb + b2. Если отрезок (ab) разделен в точке (g) на два отрезка, то квадрат, построенный на (ab), равен двум квадратам на отрезках (ag, gb) вместе с удвоенным прямоугольником на (ag, gb).

Естественно, связывая число с геометрическим образом (линией, поверхностью, телом), древние оперировали только однородными величинами; так, равенство было возможно для величин одинакового измерения.

Такое построение математики позволило античным ученым достигнуть существенных результатов в обосновании теорем и правил алгебры, но в дальнейшем оно стало сковывать развитие науки.

Приведенные примеры могут создать ощущение, что математика древних греков примитивна. Но это не так: созданная ими математика по своему идейному содержанию глубока и питала идеями и методами математику вплоть до XVII в. - века научной революции; многие идеи древних получили дальнейшее развитие в новой математике, созданной усилиями выдающихся умов XVI—XVII вв.

Накопленные в странах Древнего Востока знания состояли из набора разрозненных математических фактов, рецептур для решения некоторых конкретных задач и не могли обладать достаточной строгостью и достоверностью. Создание основ математики в том виде, к которому мы привыкли при изучении этой науки в школе, выпало на долю греков и относится к VI—V вв. до н. э. С этого времени начала развиваться дедуктивная математика, построенная на строгих логических доказательствах.

2.1.2 Алгебра Диофанта.

Новый подъем античной математики относится к III в. н. э., он связан с творчеством великого математика Диофанта. Диофант возродил и развил числовую алгебру вавилонян, освободив ее от геометрических построений, которыми пользовались греки.

У Диофанта впервые появляется буквенная символика. Он ввел обозначения: неизвестной z, квадрата d), куба c, четвертой dd (квадратоквадрат), пятой dc (квадратокуб) и шестой степеней ее, а также первых шести отрицательных степеней, т. е. рассматривал, величины, записываемые нами в виде x6, x5, x4, x3, x2, x, x-1, x-2, x-3, x-4, x-5, x-6. Диофант применял знак равенства (символ i) и знак  для обозначения вычитания.

Диофант сформулировал правила алгебраических опeраций со степенями неизвестной, соответствующие нашим умножению и делению степеней с натуральными показателями (для m + n  6), и правила знаков при умножении. Это дало возможность компактно записывать многочлены, производить умножение их, оперировать с уравнениями. Он указал также правила переноса отрицательных членов уравнения в другую часть его с обратными заиками, взаимного уничтожения одинаковых членов в обеих частях уравнения.

«Арифметика» посвящена проблеме решения неопределенных уравнений. И хотя Диофант считает число собранием (а это означает, что рассматриваются только натуральные числа), при решении неопределенных уравнений он не ограничивается натуральными числами, а отыскивает и положительные рациональные решения.

Неопределенными уравнениями до Диофанта занимались математики школы Пифагора в связи с пифагоровой теоремой. Они искали тройки целых положительных чисел, удовлетворяющих уравнению x2+ y2 = z2.

Диофант поставил задачу установить разрешимость (в рациональных числах) и в случае разрешимости найти рациональные решения уравнения F (х, у) = 0, где левая часть – многочлен с целыми или рациональными коэффициентами. Он исследовал неопределенные уравнения второй, третьей и четвертой степеней и системы неопределенных уравнений.

Во второй книге «Арифметики» он так исследует, например, уравнение второго порядка F (х, у) = 0.

Это уравнение задает коническое сечение. Всякому рациональному решению уравнения соответствует точка кривой с рациональными координатами. Пусть a, b – такие координаты, т. е. F (a, b) = 0.

Диофант делает подстановку у = b + k (х – а), или y = b + kt, х = а + t.

РўРѕРіРґР° F (Р° + t, b + kt) = F (a, b) + tA (Р°, b) + ktB (Р°, b) + t2C (a, b, k) = 0.

Но F (a, b) = 0, поэтому t = –.

Это означает, что каждому рациональному значению параметра k соответствует рациональное же значение t, а значит, рациональная точка кривой. Очевиден геометрический смысл решения: через рациональную точку кривой (a, b) проводится прямая y – b =k (x – a) и находятся вторая точка ее пересечения с кривой.

 Методы Диофанта впоследствии применяли и развивали арабские ученые, Виет (1540—1603), Ферма, Эйлер (1707—1783), Якоби (1804—1851), Пуанкаре (1854—1912).

Оценивая творчество Диофанта, Цейтен отмечает существенную деталь: «Наконец, мы желаем здесь вкратце указать на важную роль, сыгранную впоследствии сочинениями Диофанта. Благодаря тому, что определенные уравнения первой и второй степени были облечены у него в численную оболочку они оказались гораздо более доступными для людей, не посвященных еще в культуру греческой математики; более доступными, чем те абстрактные геометрические формы, которые принимают у Евклида уравнения второй степени и которые мы встречаем в сохранившихся до нас трудах других геометров для выражения уравнений первых двух степеней. Поэтому Диофант и явился главным посредником в процессе усвоения греческой алгебры арабами, благодаря которым, в свою очередь она проникла в Европу в эпоху возрождения наук».

2.1.3 Алгебра индусов.

Начиная с V в. центр математической культуры переместился на восток - к индусам и арабам. Математика индусов резко отличалась от математики греков она была числовой. Индусы не были озабочены строгостью эллинов в доказательствах и обосновании геометрии. Они довольствовались чертежами, на которых у греков основывалось доказательство, сопровождая их указанием: «Смотри!». Предполагается, что благодаря числовым выкладкам и практическому эмпиризму индусам удалось постичь теоремы и методы греков, теоретического обоснования которых они, возможно, по-настоящему не понимали.

Основные достижения индусов состоят в том, что они ввели в обращение цифры, называемые нами арабскими, и позиционную систему записи чисел, обнаружили двойственность корней квадратного уравнения, двузначность квадратного корня и ввели отрицательные числа.

Индусы рассматривали числа безотносительно к геометрии. В этом их алгебра имеет сходство с алгеброй Диофанта. Они распространили правила действия над рациональными числами на числа иррациональные, производя над ними непосредственные выкладки, а не прибегая к построениям, как это делали греки. Например, им было известно, что

Греки, не знавшие отрицательных чисел, решая уравнения, преобразовывали их так, чтобы обе части уравнения при значении неизвестной, удовлетворяющей этому уравнению, были положительными. Если этого не происходило, то менялись условия задачи. Индусы в аналогичных ситуациях не были стеснены в своих действиях: они либо отбрасывали получающиеся отрицательные решения, либо интерпретировали их как долг, задолженность. Отсюда сделан был естественный шаг к установлению правил действий над величинами при любом выборе знаков этих величин, а также к выявлению наличия двух корней у квадратных уравнений и двузначности квадратного корня.

Индусами был сделан шаг вперед по сравнению с Диофантом и в совершенствовании алгебраической символики: они ввели обозначения нескольких различных неизвестных и их степеней, которые были, как у Диофанта, по сути дела сокращениями слов. Кроме того, они искали решения неопределенных уравнений не в рациональных, а в целых числах.

2.1.4 Алгебра арабов.

Дальнейшее развитие математика получила у арабов, завоевавших в VII в. Переднюю Азию, Северную Африку и Испанию. Создались благоприятные условия для слияния двух культур – восточной и западной, для усвоения арабами богатого математического наследия эллинов и индусской арифметики и алгебры.

Но еще до того как началось усиленное изучение арабами трудов древних математиков, в 820 г., вышел трактат по алгебре «Краткая книга об исчислении ал-джабра и ал-мукабалы» Мухаммеда ибн Муса ал-Хорезми (т. е. из Хорезма, 787 – ок. 850г. н. э.), где давались числовое и геометрическое решения уравнений первой и второй степеней.

 Название трактата соответствует операциям при решении уравнений: «ал-джабр» (восстанавливать) означает восстановление отрицательного члена в одной части уравнения в виде положительного в другой. Например, преобразовав уравнение

2х2 + Зх -2 = 2х к виду 2х2 + Зх = 2х + 2, мы произвели операцию ал-джабр.

 «Ал-мукабала» означает сопоставление подобных членов, приведение их к одному; в нашем уравнении подобные члены Зх и 2х, поэтому получим 2x2+ x = 2.

Модификация слова ал-джабр породила более позднее алгебра. Аналогично, слово алгорифм (алгоритм) произошло от ал-Хорезми.

Основное внимание в трактате ал-Хорезми обращает на решение уравнений вида

ax2 = bx, ax2 = c, ax2 + bx = c, ax2 + c = bx, bx + c = ax2, bx = c,

которые формулирует словесно, например, так: «квадраты и корни равны числу» (ах2+ bх = с). Он высказывает правила, дающие только положительные решения уравнений, определяет условия, при которых эти решения существуют. Обоснование правил ал-Хорезми дает в духе геометрической алгебры древних.

От арабов Европа получила следующий способ решения уравнения

х2 + ах = b.

Построим квадрат х2, к его сторонам приложим четырехугольники длины х + 2а/4 = х + а/2 и ширины а/4. Тогда площадь полученного квадрата = x2+ ax + .

Значит, x2 + ax +  = = b + , = b + .

Величины b и а известны, поэтому можно построить , откуда х + = -. Впрочем, ал-Хорезми, приведший в своем сочинении этот метод, уравнению ах2 + с = bх приписывал два корня.

В трактате приведены некоторые сведения о действиях над алгебраическими выражениями, примеры решения треугольников много задач о разделе наследства приводящих к уравнениям первой степени. Таким образом, трактат ал-Хорезми не содержал ничего нового по сравнению с тем, что было у греческих авторов и индусов, но он заслуживает внимания потому, что в течение длительного времени был руководством, по которому велось обучение в Европе.

2.1.5 Развитие алгебры в Европе.

Каково же было состояние математики в это время в Европе. Об этом наука располагает крайне скудными сведениями.

В XII – XIII вв. в Европе интенсивно переводились в арабского языка как труды самих арабов, так и работы древних греков, переведенные на арабский язык.

Первым европейским математиком, которому удалось осветить многие вопросы и внести в математику свой вклад, был Леонардо Пизанский (Фибоначчи, 1180–1240), написавший «Книгу абака». В ней рассмотрены различные задачи, указаны методы их решения, причем арифметика и алгебра линейных и квадратных уравнений изложены с небывалой до этого времени точностью и полнотой.

Существо задачи Леонардо излагает словесно; неизвестную он называет res (вещь) или radix (корень); квадрат неизвестной – census (имущество) или quadratus (квадрат); данное число – numerus. Все это латинские пероводы соответствующих латинских слов.

Современник Леонардо, Иордан Неморарий (XIII в), употреблял буквенные обозначения более систематично и решал задачи с применением линейных и квадратных уравнений, сначала в общем виде, а затем иллюстрировал их числовыми примерами.

Французский епископ Николь Орем (1323-1382) рассматривал «дробно – рациональные отношения», соответствующе современным степеням aЅ, aј, a3/2 и т.д., сформулировал правила операций с этими отношениями типа ,    ,         ,               ,           

Орем вплотную подошел к понятию иррационального показателя. Он доказал расходимость гармонического ряда 1 + +++…

Выдающимся алгебраистом своего времени стал монах-францисканец Лука Пачоли (ок. 1445 – ок.1514) близкий друг Леонардо да Винчи, работавший профессором Математики в университетах и различных учебных заведениях Рима, Болоньи, Неаполя, Флоренции, Милана и других городов.

Он ввел «алгебраические буквы» (caratteri algebraici), дал обозначения квадратному и кубическому корням, корню четвертой степени; неизвестную х он обозначал со (cosa – вещь), х2 – се (censo - квадрат, от латинского census), х3 – cu (cubo), x4 – се. се. (censo de censo), x5 – р°г° (primo relato – «первое relato», x6 – р°г° х – се. cu. (censo de «второе relato»), х8 – ce. ce. ce. (de censo), x9 – cu. cu. (cubo de cubo), x10 – ce. p°r° (censo de primo relato), x13– 3°r° (tersio relato - «третье relato») и т. д.; свободный член уравнения – n° (numero – число). Как видим, некоторые степени Пачоли получал мультипликативным способом с помощью показателей 2 и 3 (х4 = х2Ч2 , х6 = х2Ч3, х9 = х3Ч3 и т. д.), а в случаях, когда так не получалось, пользовался словом relato (например, при образовании х5, х7, х11 и т. д.). Специальными символами Пачоли обозначил вторую неизвестную и ее степени. Для обозначения операции сложения он воспользовался знаком  (plus – больше), для обозначения вычитания – знаком  (minus – меньше). Он сформулировал правила умножения чисел, перед которыми стоят знаки и .

Раздел «Суммы», посвященный алгебраическим уравнениям, Пачоли закончил замечанием о том, что для решения кубических уравнений х3 + ах = b и х3 + b = ах «искусство алгебры еще не дало способа, как не дан еще способ квадратуры круга».

Некоторый шаг в совершенствовании алгебраической символики сделал бакалавр медицины Н. Шюке (ум. ок. 1500 г.), который в книге «Наука о числах в трех частях» изложил правила действий с рациональными и иррациональными числами и теорию уравнений. Для сложения и вычитания он вслед за Пачоли пользовался знаками  и , причем, знак  служил и для обозначения отрицательного числа. Неизвестную величину он называл premier («первое число»), а ее степени – вторыми, третьими и т. д, числами. Записи степеней неизвестной у Шюке лаконичны. Например, современные символы 5, 5ж, 5х, 5х2, 5х3 у него выглядели бы так: 5°, 51, 52, 53. Вместо равенства 8х3Ч7х-1 = 56х2 Шюке писал: «83, умноженное на 71Ч, дает 562». Таким образом, он рассматривал и отрицательные показатели. Относительно свободных членов уравнения Шюке указывал, что эти числа «имеют имя нуль».

Значительного успеха в совершенствовании «алгебраических букв» Луки Пачоли достигли немецкие алгебраисты – «коссисты». Они вместо  и ввели знаки + и –, знаки для неизвестной, и ее степеней, свободного члена.

XVI в. в алгебре ознаменовался величайшим открытием – решением в общем виде уравнений третьей и четвертой степеней.

Спицион дель Ферро в 1506 г. нашел решение кубического уравнения вида

В x3 + ax = b a,b >0. (1)

Чуть позже Тарталья указал решение этого же уравнения в виде х = - , где u – v = b, uv = , откуда u и v находятся как корни квадратного уравнения.

Также он нашел решение уравнения x3 = ax + b a,b >0 (2)

РІ РІРёРґРµ С… = + , РіРґРµ u + v = b, uv = .

Уравнение же x3 + b = ax a,b >0 можно решить с помощью уравнения (2).

В те времена предпочитали избегать отрицательных корней и задачи, сводящиеся к отрицательным корням уравнения (2), преобразовывали так, чтобы они приводили к положительным корням уравнения (3). Лишь Кардано позже осознал выгоду рассмотрения отрицательных корней.

Почему рассматривались только уравнения вида (1) и (2)? На этот вопрос ответ дал Кардано.

Чтобы разобраться в нем, рассмотрим полное уравнение третьей степени.

y3 + ay2 + by + c = 0.

Не следует думать, что Тарталья и Кардано писали такие уравнения. Нет, так стали поступать гораздо позже. Записывать все члены уравнения в одной части, приравнивая к одной части, начал Декарт. Да и символики не было, пользовались прообразами символов и словами. Уравнение x3 + ax = b записывалось примерно так: «куб» (х3) некоторое количество (а) «вещей» (х) равно данному «числу» (b). Понять можно, но оперировать сложно.

Полное уравнение можно преобразовать в неполное, не содержащее члена с квадратом неизвестной. Сделаем замену y = x + a и подставим в уравнение; получим х3+ (3a + а)х2 + (3a2 + 2aа + b)x + (a3+ aa2+ ba + c) = 0.

Положим 3a + а = 0. Найдем отсюда a = - а/3 и подставим в выражения

В p = 3a2+ 2aР° + b, q = a3+ Р°a2+ ba + c.

Тогда уравнение примет вид х3 + px + q = 0.

В нашей символике это уравнение соответствует уравнениям (1), (2), которые решал Тарталья.

Кардано узнал способ решения уравнений третьей степени, предложенный Тартальи, опубликовал его. Формула же стала носить название «формулы Кардано».

Выведем теперь ее.

Рассмотрим уравнение х3 + px + q = 0. Введем новые неизвестные x = u + v и подставим их в исходное уравнение; получим u3 + v3 + (3uv + p)(u + v) + q = 0.

Приравняем 3uv + p к нулю: 3uv + p = 0.

Уравнение примет вид u3+ v3 + q = 0. Тогда uv = – , u3v3 = – , u3+ v3 = -q.

Выражения u3 и v3 можно принять за корни квадратного уравнения z2+ qz – = 0.

Решая его, получим z1= –  + , z2= – – .

Таким образом, x = u + v = +, x =+.

Это и есть формула Кардано. Не лишне заметить, что в таком виде Кардано ее не искал: он формулировал решение уравнений (1)и (2) и рассматривал связь между уравнениями (2) и (3).

В случае, когда +

Чтобы получить представление о символике Кардано, приведем пример записи корня кубического уравнения x3+ 6x = 20. Выражение записывалось так Rx.u.cu.Rx.10810ЅRx.u.cu.Rx.10810.

Здесь Rx – знак корня (Radix), Rx.u.cu означает корень кубический из всего выражения до вертикальной черты или после нее,  и - сокращения слов plus и minus.

Кардано показал, что легко можно решить уравнение x4 ax = bx2 + . Он привел его к виду x4 = b(x)2, а затем извлечением корня получил квадратное уравнение. Аналогично он рассматривал и некоторые другие виды уравнений.

Однако уравнение x4+ 6x2 + 36 = 60x, предложенное да Кои Кардано не сумел решить.

Открыл метод решения уравнений четвертой степени 23 – летний ученик Кардано – Луиджи Феррари.

После того, как были исследованы уравнения третьей степени, задача об уравнениях четвертой степени стала более легкой. Феррари рассматривал уравнение, не содержащее члена с x3, т.е. уравнение вида x4+ ax2 + bx + c = 0.

Он преобразовывал его так, чтобы в левой части был полный квадрат, а в правой – выражение не выше второй степени относительно x.

Выделением полного квадрата получалось = x4+ ax += -bx – c + , = -bx – c + .

Теперь следовало выполнить такие преобразования, чтобы из левой и правой частей можно было извлечь корень. С этой целью Феррари вводил новую переменную t и прибавлял к обеим частям выражение 2t + t2. Это дает = 2tx2 – bx – c + at + + t2, = 2tx2 – bx + (– c + + at + t2).

Нужно, чтобы правая часть была полным квадратом. Вспомним, как обстоит дело с трехчленом ax2+ bx + c. Выделим в нем полный квадрат: ax2+ bx + c = а(x2 + x + ) = =a(x2 + 2xЧ + - +) = a(x2 + 2xЧ +  + ) = a(x+)2 + .

Трехчлен будет полным квадратом, когда 4ac – b2 = 0. В нашем случае роль коэффициента при x2 играет 2t, а роль свободного члена - выражение в скобках правой части уравнения. Тогда выражению 4ac – b2 = 0 соответствует 4Ч2t(t2 + at +  - c) – b2 = 0, b2 = 2t(4t2 + 4at + a2 - 4c).

Таким образом, нахождение t свелось к решению кубического уравнения, а x находится з квадратного уравнения после извлечения корня из левой и правой частей, т.е. из уравнения x2 + + t0= .

Кардано отмечает, что таким же приемом можно решать уравнения, в которых отсутствует член не с третьей степенью х, а с первой. В этом случае делается подстановка х = k/y.

Открытия, сделанные итальянцами в алгебре и систематически изложенные Кардано, стали доступны математикам других стран и дали импульс развитию науки.

Дальнейшее развитие алгебры было связано с совершенствованием символики и разработкой общих методов решения уравнений.

В этом преуспел Франсуа Виета.

2.2 Символика Виета и развитие алгебры.

Виет считается одним из основоположников алгебры. Но его интерес к алгебре первоначально связан с возможными приложениями к тригонометрии и геометрии. А задачи тригонометрии и геометрии, в свою очередь, приводили Виета к важным алгебраическим обобщениям. Так было, например, с решением уравнений третьей степени в неприводимом случае и с исследованием некоторых классов разрешимых алгебраических уравнений высших степеней.

Свою алгебру Виет ценил очень высоко. Он не пользовался словом «алгебра», эту науку он зазывал «искусством анализа». Виет различал видовую логистику и числовую логистику. Термин «логистика» означает совокупность арифметических приемов вычислений, «вид» имел смысл символа.

Видовая логистика Виета после внесенных им в символику усовершенствований представляла собой буквенное исчисление. Ее объектами служат геометрические и псевдогеометрические образы, связанные между собой различными соотношениями. Виет был последователем древних: он оперировал такими величинами, как сторона, квадрат, куб, квадратоквадрат, квадратокуб , и т. д., образующими своеобразную лестницу скаляров. Действия над скалярами у Виета, как и у древних геометров, подчинены «закону однородности»: составленные из неизвестных и известных величин уравнения должны быть однородными относительно всех их вместе взятых. Умножению чисел у Виета соответствует образование нового скаляра, размерность которого равна сумме размерностей множителей. Операция, соответствующая делению чисел, дает новую величину, размерность которой равна разности размерностей.

Виет разработал символику, в которой наравне с обозначением неизвестных впервые появились знаки для произвольных величин, называемых в настоящее время параметрами. Для обозначения скаляров он предложил пользоваться прописными буквами: «искомые величины будут обозначены буквой А или другой гласной Е, I, О, U, Y, а данные – буквами B, D, G или другими согласными»

Слово «коэффициент» введено Виетом. Рассматривая выражение

(Рђ + Р’)2 + D(A + Р’),

он назвал величину D, участвующую с А + В в образовании площади, longitude ciefficiens, т. е. содействующей длиной.

Из знаков Виет употреблял +, — и дробную черту. Современные скобки у него заменяла общая черта на всем выражением.

Символика Виета страдала недостатками, в некоторых отношениях она была менее совершенна, чем у его предшественников и современников. Виет для записи действий употреблял слова: in у него означало умножение, aequatur заменяло знак равенства. Словами же выражались степени различных величин. Для трех низших степеней он взял названия из геометрии, например, А3называл A cubus. Высшим степеням он давал геометрические наименования, происходящие от низших: А9, например,— A cubo-cubo-cubus. Известная величина В представлялась как величина девятой степени записью solido-solido-solidum. Если сторона (latus) умножается на неизвестную величину, то она называется содействующей) (coefficiens) при образовании площади.

Уравнение А3 + 3ВА = D Виет записывал так: А cubus + В planum in 43 aequatur D solido, а уравнение ВАn–Аm+n = Z так:

В parabola in А gradum — А potestate aequatur Z homogenae (В, умноженное на градус А, минус А в степени равняется однородной Z),

Обозначения в числовой логистике выглядели проще:

N – первая степень, Q – квадрат, С – куб и т. д. Уравнение x3 - 3x = 1 записывалось в виде 1С – 3N aequatur 1»

Неудобства символики Виета связаны и с требованием однородности. Как и древние греки, Виет считал, что сторону можно складывать только со стороной, квадрат – с квадратом, куб – с кубом и т. д. В связи с этим возникал законный вопрос: имеют ли право на существование уравнения выше третьей степени, поскольку в пространственном мире четвертая, пятая и т. д. степени аналогов не имеют.

Для придания уравнению однородности Виет после входящих в него параметров писал planum (плоскость), solidum (тело) и т. д. Вот как выглядит в записи Виета уравнение х3 + ЗВ2х = 2z3: A cubus + В plano 3 in A aequari Z solido 2.

Правило Тартальи для решения уравнения третьей степени у Виета имело вид:

.

Символики Виета придерживался впоследствии П. Ферма. От «тирании» однородности просто и остроумно сумел освободиться Декарт (об этом будет сказано дальше).

Может показаться, что Виет ввел в символику алгебры совсем немного. Буквами для обозначения отрезков пользовались еще Евклид и Архимед, их успешно применяли Леонардо Пизанский, Иордан Неморарий, Николай Орем, Лука Пачоли, Кардано, Бомбелли и многие другие математики. Но сделал существенный шаг вперед Виет. Его символика позволила не только решать конкретные задачи, но и находить общие закономерности и полностью обосновывать их. Это, в свою очередь, способствовало выделению алгебры в самостоятельную ветвь математики, не зависящую от геометрии. «Это нововведение (обозначение буквами данных и искомых) и особенно применение буквенных коэффициентов положило начало коренному перелому в развитии алгебры: только теперь стало возможным алгебраическое исчисление как система формул, как оперативный алгоритм».

Сказанное, легко подтвердить примерами. Пусть х1, x2 – корни квадратного уравнения. Перемножим разности x – x1 и х – х2: (x – x1)(х – х2)=х2 – (х1 + х2)х + х1х2.

Обозначим (x – x1)(х – х2) = х2 + px + q, сравнивая с предыдущим, получим p = – (х1 + х2), q = x1x2.

Выполним то же самое для кубического уравнения:

(x – x1)(х – х2)(x – x3)=x3 – (х1 + х2 + x3)x2 + (x1x2 + x1x3 + x2x3)x – x1x2x3.

Сравним результат с выражением (x – x1)(х – х2)(x – x3) = x3 + a1x2 + a2x + a3.

Это дает a1 = – (x1 + x2 + x3)

В a2 = x1x2 + x1x3 + x2x3

 a3= – x1x2x3.

Такой результат для квадратного уравнения был известен Кардано (в случае положительных корней – еще и раньше); Кардано отметил свойство корней кубического уравнения относительно коэффициента при х2. Но никакого обоснования в общем виде дать он не мог; это сделал Виет для уравнений до пятой степени включительно.

Преимущества символики предоставили Виету возможность не только получить новые результаты, но и более полно и обоснованно изложить все известное ранее. И если предшественники Виета высказывали некоторые правила, рецептуры для решений конкретных задач и иллюстрировали их примерами, то Виет дал полное изложение вопросов, связанных с решением уравнений первых четырех степеней.

Рассмотрим ход рассуждений Виета при решении кубического уравнения.

Возьмем уравнение x3 + 3ax = 2b. Положим a = t2+ xt.

Найдем отсюда

х =  и подставим в исходное уравнение. Получим  + 3a = 2b, откуда для определения t наводим квадратное уравнение относительно t3: (t3)2 + 2bt3 – а3 == 0.

Отсюда определится t, а затем и х. Заметим еще, что подстановка а = t2 + xt приводит исходное уравнение к виду

(х + t)3 – t3 = 2b,

которое вместе с уравнением (х + t)t = a, (х + t)3t3 = a3 дало бы возможность применить метод Тартальи и дель Ферро. Но Виет таким путем не пошел.

Рассмотрим теперь пример. Найдем методом Виета действительный корень уравнения

С…3 + 24x=56.

Здесь а=8, b=28. Запишем уравнение относительно t: (t3)2 + 56t3 - 83 - 0.

Решим его:

t3= –28 = – 2836 t1 = = 2 t2 = = –4.

Найдем теперь х:

x1 =  = –2 , x2 =  = 2 = x1.

При изложении метода Феррари для решения уравнения четвертой степени Виет провел аналитически выкладки, указанные выше, и получил уравнение, содержащее основную неизвестную А и вспомогательную Е (х и t у Феррари).

 Виет, верный последователь древних, оперировал только рациональными положительными числами, которые он обозначал буквами. Если в результате подстановки в уравнение значений параметров неизвестное оказывалось иррациональным, он давал этому случаю особое обоснование.

В качестве примера такого обоснования приведем «геометрическое» решение кубического уравнения по способу дель Ферро – Тартальи.

В записи Виета уравнение имело вид A3 + 3BA = D.

Известное решение: А является разностью «сторон» которые образуют площадь В и разность кубов которых равна D. Если обозначить «стороны» буквами u и v, то uv = B, u3 – u3 =D, A= u –v.

Виет придавал решению «геометрическое» толкование; он вместо D solidum записывал произведение В planum на D, т. е. получал уравнение A3 + 3ВA= BD.

Затем он определял четыре величины, образующие «геометрический ряд», так, чтобы прямоугольник, построенный на средних или на крайних, по площади равнялся В, а разность крайних была D. Тогда A будет разностью средних.

Поясним сказанное. Обозначим эти четыре величины через z, u, v и t. Тогда можно записать

z:u = u:v = v:t, zt = uv = B, z – t = D, A = u – v.

Если в решении Тартальи D заменить на BD, то оба решения совпадут.

Способ Виета означает замену кубического корня двумя средними геометрическими, что полностью соответствует духу древних греков.

Из получившихся пропорций найдем

u3 = z2t, v3 = zt u3 – v3 = zt(z – t) = BD

Виет особо рассматривал трехчленные уравнения различных степеней и в первую оч



Похожие статьи

Звезды и люди
Парадоксально, но сегодня, в эру лазеров и спутников, в самом технически развитом обществе за всю историю человечества процветает астрология – предсказание судьбы объекта по расположению звезд и пл...

Генетический алгоритм
Генетический алгоритм (ГА) разработан Джоном Голландом (John Holland) в 1975 году в Мичиганском университете. В дальнейшем Д. Голдберг (D. Goldberg) выдвинул ряд гипотез и теорий, помогающих глубже...

Гипотеза Геи
Земля представляет собой единый живой организм.Гея — греческая богиня, которая вывела мир из хаоса. Гипотезу Геи выдвинул английский ученый Джеймс Лавлок, работавший в НАСА в начале 1960-х годов, в...



Copyright В© 2006-2007 ExcelioN
Правовая информация
Все права защищены
.
Время генерации страницы: 0.042427062988281 сек.