Несколько сотен лет назад весь объем научных знаний был столь мал , что один человек мог подробно ознакомиться почти со всеми основными научными идеями . Накопление научной информации начиная с эпохи Возрождения происходило так быстро , что представление об ученом , как о человеке , обладающем универсальными знаниями , давно уже потеряло смысл . В настоящее время ученые делятся на физиков , химиков , биологов , геологов и т.д.
Физик старается познать самые элементарные системы в природе . Сделанные физиками открытия не только расширяют наши знания об основных физических процессах , но часто играют решающую роль в развитии других наук . Законы физики управляют всеми физическими процессами.
РџРѕРіРѕРІРѕСЂРёРј Рѕ законах сохранения .РР· законов сохранения наибольший интерес представляет тот , что связан СЃ энергией . РњС‹ слышим , что потребление энергии постоянно растет , Рё знаем , что недавняя нехватка энергии оказала влияние как РЅР° повседневную Р¶РёР·РЅСЊ , так Рё РЅР° международные отношения . Представление РѕР± энергии связано , РїРѕ-РІРёРґРёРјРѕРјСѓ , СЃ нефтью , СЃ углем , СЃ падающей РІРѕРґРѕР№ , СЃ ураном . Рнергия РЅРµ только РїСЂРёРІРѕРґРёС‚ РІ движение автомобили Рё обогревает РґРѕРјР° ; РѕРЅР° также необходима , например , для производства металлов Рё удобрений . Р’СЃРµ живые существа РІ буквальном смысле поедают энергию , чтобы поддержать Р¶РёР·РЅСЊ . РР· рекламных проспектов РјС‹ знаем , что определенные продукты питания для завтрака РјРѕРіСѓС‚ сообщить “ заряд энергии “ , чтобы начать трудовой день .
Удивительно , что , несмотря на повсеместную большую роль энергии , это понятие оставалось неясным вплоть до середины ХIХ века
. Галилей , Ньютон и Франклин не знали , несмотря на всю их искушенность , что физическая величина , которую теперь называют энергией , может быть определена так , чтобы она всегда сохранялась .
Р’РѕР·РјРѕР¶РЅРѕ , РѕРЅРё РЅРµ пришли Рє такой мысли потому , что это понятие РІРѕРІСЃРµ РЅРµ очевидно . Рнергия проявляется РІРѕ множестве различных форм
. Движущийся автомобиль обладает энергией . Неподвижная батарейка карманного фонаря обладает энергией . Камень на вершине утеса обладает энергией . Кусочек сливочного масла обладает энергией . чайник кипятка обладает энергией . Солнечный свет обладает энергией .
Рнергия , проявляющаяся РІРѕ всех этих различных формах , может быть определена таким СЃРїРѕСЃРѕР±РѕРј , что РїСЂРё любом превращении системы полная энергия сохраняется . Однако для системы , которая РЅРёРєРѕРіРґР° РЅРµ претерпевает никаких изменений , разговор Рѕ содержании энергии беспредметен . Только РїСЂРё переходе РёР· РѕРґРЅРѕР№ формы РІ РґСЂСѓРіСѓСЋ или РёР· РѕРґРЅРѕРіРѕ места РІ РґСЂСѓРіРѕРµ представление РѕР± энергии становиться полезным
.
Полная энергия
Потенциальная энергия . Слово “энергия” рождает в сознании образы бушующих волн , мчащихся автомобилей , прыгающих людей и интенсивной деятельности любого типа . Между тем существует и другой тип энергии . Она прячется под землей в нефтеносных пластах или таится в водохранилищах перегороженных плотинами каньонов . Аккумулятор автомобиля или неподвижная мышеловка в действительности наполнены запасенной энергией , которая готова выплеснуться наружу и воплотиться в движущиеся формы . Такие неподвижные формы энергии называют потенциальными как бы специально для того , чтобы подчеркнуть , что их потенциально можно превратить в энергию движения . В действительности любую формы энергии можно назвать потенциальной . Обычно , однако , термин потенциальная энергия относиться к энергии , запасенной в деформированном теле или в результате смещения тел в некотором электрическом , магнитном или гравитационном силовом поле . Если тела смещаются из определенных положений , а затем возвращаются обратно , система снова приобретает свою первоначальную потенциальную энергию .
Мы рассмотрим несколько различных видов потенциальной энергии . В каждом случае кинетическая работа или работа могут быть превращены в скрытую форму энергии , а затем восстановлены обратно без потерь .Более того мы определим потенциальную энергию таким образом , чтобы во всех случаях полная энергия оставалась постоянной . При совершении работы или при исчезновении кинетической энергии потенциальная энергия будет увеличиваться . В таких процессах энергия будет сохраняться , что и неудивительно , поскольку само понятие потенциальной энергии вводится именно для этой цели . В действительности , конечно , в большинстве систем рано или поздно исчезают и потенциальная , и кинетическая энергия . Тогда мы определяем новый вид энергии , связанный с внутренней структурой вещества , и снова “спасаем” закон сохранения энергии .
Возвращающие силы Рё потенциальная энергия . Количество энергии , запасенной РІ гравитационной системе , РІ РїСЂСѓР¶РёРЅРµ или РІ системе магнитов , зависит РѕС‚ степени деформации системы . Рто искажение может заключаться РІ перемещении тяжелого тела РЅР° высоту h , РІ растяжении РїСЂСѓР¶РёРЅС‹ РЅР° длину С… , РІ сближении РЅР° расстояние С… РґСѓС… отталкивающихся магнитов . РќР° графиках показана зависимость РѕС‚ искажения
, h или х.
Потенциальная энергия системы является скалярной величиной, выражаемой в джоулях , которая сама по себе не дает никакой информации о ее будущем поведении . Взгляните на графики Wпот ( x ) для трех разных пружин и найдите на каждом точку , где Wпот = 1 Дж
. Очевидно , первый график соответствует слабой РїСЂСѓР¶РёРЅРµ , которую сильно растянули. Второй относиться Рє сильной РїСЂСѓР¶РёРЅРµ , которую надо растянуть совсем немного для того , чтобы запасти 1 Дж . Р’ третьем случае РїСЂСѓР¶РёРЅР° сжата . Хотя значение потенциальной энергии одинаково РІРѕ всех случаях , поведение РїСЂСѓР¶РёРЅ , если РёС… освободить , будет совершенно различным . Первая РїСЂСѓР¶РёРЅР° будет медленно тянуть обратно ( влево ) , вторая резко дернет влево , третья будет распрямляться вправо . Хотя РѕРґРЅРѕ только значение потенциальной энергии РЅРµ позволяет предсказать такое различное поведение , это ,очевидно , РјРѕР¶РЅРѕ сделать , зная форму всего графика WРїРѕС‚ ( x ). Рменно наклон РєСЂРёРІРѕР№ WРїРѕС‚ ( x ) РІ каждой точке характеризует возвращающую силу РІ С… – направлении , которая действует РІ системе РІ этой точке .
Рассмотрим несколько примеров .
График Wпот( h ) для тела , поднятого над поверхностью Земли
( для малых высот ) , имеет постоянный наклон ((mgh )/?h = mg .
Тангенс угла наклона раве весу тела .Здесь , однако , имеется некоторая тонкость . Возвращающая сила тяготения направлена вниз и потому отрицательна . Тангенс угла наклона графика Wпот( h ) положителен . Если мы хотим получить возвращающую силу в системе , то следует взять отрицательный тангенс : Fвозвр= -?W(h)/?h . Внешняя сила , которую следует приложить к системе для того , чтобы запасти энергию тяготения , направлена в противоположную сторону , то есть вверх , и положительна . То же самое справедливо и для энергии , запасенной в пружине . Возвращающая сила дается выражением
Fвозвр= - ?W(x)/?x = -?[ЅkxІ] /?x = -kx.
Возвращающая сила подчиняется закону Гука ; она пропорциональна смещению и направлена в сторону , противоположную смещению. Заметьте, что это определение согласуется с тем , что можно было ожидать качественно в случаях трех пружин , которые мы рассмотрели . В первом случае тангенс угла наклона мал и положителен , поэтому возвращающая сила будет малой и отрицательной – направленной в сторону меньших значений х . Во втором случае тангенс угла наклона велик и положителен - возвращающая сила будет большой и отрицательной . В третьем случае тангенс угла наклона отрицателен , поэтому возвращающая сила будет положительной , заставляя пружину расширяться .
В случае магнитов , где
Wпот.магн( x ) = C / х ,
Fмагн= - ?(C/x)/?x = C/xІ.
Обратите внимание , что возвращающая сила положительна , магниты отталкивают друг друга в сторону больших значений х .
Снова обратите внимание на касательные , показанные на графике
Wпот.магн( x ) . При малых х наклон очень крутой и отрицательный , поэтому сила велика и положительна ( F = - ?Wпот.магн ( x ) / ?х ) .
При больших х наклон незначительный и отрицательный . Следовательно , сила маленькая и положительная .
Пример, доказывающий закон сохранения энергии. Рассмотрим движение тела в замкнутой системе, в которой действуют только консервативные силы. Пусть , например , тело массой m свободно падает на Землю с высоты h ( сопротивление воздуха отсутствует ) . В точке 1 потенциальная энергия тела относительно поверхности Земли равна
Wп1=mgh , а кинетическая энергия Wк1=0 , так что в точке 1 полная механическая энергия тела W1=Wп1+Wк1=mgh .
При падении потенциальная энергия тела уменьшается , так как уменьшается высота тела над Землей , а его кинетическая энергия увеличивается , так как увеличивается скорость тела . На участке 1-2 равном h , убыль потенциальной энергии ?Wп=mgh1 , а прирост кинетической энергии ?Wк=Ѕ·mv2І , где v2 – скорость тела в точке 2 .
Так как v2Р†=2gh1 , то принимает РІРёРґ ?WРє=mgh1 . РР· формул следует , что РїСЂРёСЂРѕСЃС‚ кинетической энергии тела равен убыли его потенциальной энергии . Следовательно , РїСЂРѕРёСЃС…РѕРґРёС‚ переход потенциальной энергии тела РІ его кинетическую энергию , С‚.Рµ. ?WРє = -WРї . Р’ точке 2 потенциальная энергия падающего тела WРї2 =WРї1 – ?WРї =mgh – mgh1 , Р° его кинетическая энергия WРє2 =?WРє=mgh1 .
Следовательно , полная механическая энергия тела в точке 2 W2=Wк2 +
Wп2 = mgh1 + mgh – mgh1 = mgh .
В точке 3 ( на поверхности Земли ) Wп3 =0 ( т.к. h=0 ) , а
Wк3 =Ѕ·mv3І , где v3 – скорость тела в момент падения на Землю . Так как v3І=2gh , то Wк3 =mgh . Следовательно , в точке 3 полная энергия тела W3 =mgh , т.е. за все время падения W =Wк +Wп
=const .
Рта формула выражает закон сохранения энергии РІ замкнутой системе , РІ которой действуют только консервативные силы :
Полная механическая энергия замкнутой системы тел, взаимодействующих между собой только консервативными силами, при любых движениях этих тел не изменяется. Происходят лишь взаимные превращения потенциальной энергии тел в их кинетическую энергию и обратно.
Еще один пример из жизни. Сохранение энергии – вопрос сложный и во многом не до конца разгадан , поэтому приведу следующее простенькое сравнение .
Вообразите , что мать оставляет в комнате ребенка с 28 кубиками , которые нельзя сломать . Ребенок играет кубиками целый день , и мать , вернувшись , обнаруживает , что кубиков по-прежнему 28 – она следит за сохранением кубиков ! Так продолжается день за днем
, но однажды , вернувшись , она находит всего 27 кубиков . Оказывается
, один кубик валяется за окном –ребенок его выкинул . Рассматривая законы сохранения , прежде всего нужно убедится в том , что ваши предметы не вылетают за окно . Такая же неувязка получится , если в гости к ребенку придет другой мальчик со своими кубиками . Ясно
, что все это нужно учитывать , рассуждая о законах сохранения . В один прекрасный день мать , пересчитывая , обнаруживает всего 25 кубиков и подозревает , что остальные 3 ребенок спрятал в коробку для игрушек . Тогда она говорит : “ Я открою коробку “ . “ Нет , - отвечает он , - не смей открывать мою коробку “ . Но мама очень сообразительна и рассуждает так : “ Я знаю , что пустая коробка весит 50 г , а каждый кубик весит 100 г , поэтому мне надо просто – напросто взвесить коробку “ . Затем , подсчитав число кубиков , она получит
Число видимых кубиков + ( Масса коробки – 50 г
) / 100 Рі
- опять 28 . Какое-то время все идет гладко , но потом сумма опять не сходится . Тут она замечает , что в раковине изменился уровень грязной воды . Она знает , что если кубиков в воде нет , то глубина ее равна 15 см , а если положить туда один кубик , то уровень повысится на 0,5 см .
Число видимых кубиков + ( масса коробки – 50 г
) / 100 г + ( уровень воды – 15 см ) / 0,5 см и снова получается 28 .
Мы установили , что для закона сохранения энергии у нас есть схема с целым набором правил . Согласно каждому из этих правил
, мы можем вычислить значение для каждого из видов энергии . Если мы сложим все значения , соответствующие разным видам энергии , то сумма их всегда будет одинаковой .
Взаимосвязь потенциальной и кинетической энергий. Рассмотрим один примеров применения закона сохранения энергии . Мы знаем , что W=Wк
+ Wп . Рассмотрим так называемые “американские горы” в разрезе .
Допустим , что тележка начинает СЃРІРѕРµ движение СЃ высоты h над уровнем Земли . РџРѕ своему опыту РјС‹ знаем , что скорость тележки наибольшая РІ “долинах” Рё наименьшая РЅР° “горах” . Рто объясняется взаимным превращением потенциальной Рё кинетической энергий . Поскольку потенциальная энергия РІ любой точке пропорциональна высоте этой точке над уровнем отсчета ( или Земли ) , разрез РіРѕСЂ РјРѕР¶РЅРѕ превратить РїСЂСЏРјРѕ РІ диаграмму потенциальной энергии. Пользуясь этим графиком , РјС‹ можем узнать значение WРїРѕС‚ РІ любой точке пути тележки
.
Положение S=S1=0 соответствует точке старта , где Wпот( S1
) = mgh1 и Wкин( S1 ) = 0 . В результате полная энергия W в точке
S=S1 равна W=Wпот( S1 ) + Wкин( S1 ) = mgh1 . Если пренебрегать потерями энергии на трение , то , согласно закону сохранения энергии , полная энергия в любой другой точке тоже должна быть равна mgh1
. В точке S= S2, где тележка находится на высоте h2 , потенциальная энергия равна Wпот( S2 ) = mgh2 и кинетическая энергия должна быть равна разности между W и Wпот ( S2 ) , т.е.
Wкин( S2 ) =W–Wпот( S2 )= mg( h1 – h2 ) .
Таким образом , можно построить график кинетической энергии , которая представляет собой расстояние от прямой , изображающей полную энергию до кривой потенциальной энергии .
Всеобщий характер закона сохранения энергии. Выходит , все рассматриваемые нами случаи имели одну весомую оговорку : не учитывалась сила трения . Но когда на тело действует сила трения ( сама по себе или вместе с другими силами ) , закон сохранения механической энергии нарушается : кинетическая энергия уменьшается , а потенциальная взамен не появляется . Полная механическая энергия уменьшается . Но при этом всегда растет внутренняя энергия . С развитием физики обнаруживались все новые виды внутренней энергии тел : была обнаружена световая энергия , энергия электромагнитных волн , химическая энергия , проявляющаяся при химических реакциях ; наконец , была открыта ядерная энергия . Оказалось , что если над телом произведена некоторая работа , то его суммарная энергия настолько же убывает . Для всех видов энергии оказалось , что возможен переход энергии из одного вида в другой , переход энергии от одного тела к другому , но что и при всех таких переходах общее количество энергии всех видов , включая и механическую и все виды внутренней энергии , остается все время строго постоянным . В этом заключается всеобщность закона сохранения энергии .
Хотя общее количество энергии остается постоянным , количество полезной для нас энергии может уменьшаться и в действительности постоянно уменьшается . Переход энергии в другую форму может означать переход ее в бесполезную для нас форму . В механике чаще всего это – нагревание окружающей среды , трущихся поверхностей и т.п. Такие потери не только невыгодны , но даже вредно отзываются на самих механизмах ; так , во избежание перегревания приходится специально охлаждать трущиеся части механизмов .
Наиболее важный физический принцип. Любой физический закон имеет ценность лишь постольку , поскольку он позволяет проникнуть в тайны природы . С этой точки зрения закон сохранения энергии , конечно , самый важный закон в науке . Вместе с законом сохранения импульса рассмотрение баланса энергии в радиоактивном ( -распаде привело к постулированию существования нейтрино – одной из наиболее интересных фундаментальных частиц . используя закон сохранения энергии , мы смогли глубоко проникнуть в сущность сложнейших процессов , протекающих в биологических системах .Несмотря на чрезвычайную трудность проведения точных физических измерений на живых организмах , при изучении процессов обмена веществ в малых организмах удалось подтвердить справедливость закона сохранения энергии с точностью 0,2
% .
Многие явления природы задают нам интересные загадки в связи с энергией . Не так давно были открыты объекты , названные квазарами
( quasar – сокращение РѕС‚ quasi star – “будто Р±С‹ звезда” . ) РћРЅРё находятся РЅР° громадных расстояниях РѕС‚ нас Рё излучают РІ РІРёРґРµ света Рё радиоволн так РјРЅРѕРіРѕ энергии , что возникает РІРѕРїСЂРѕСЃ , откуда РѕРЅР° берется . Если энергия сохраняется , то состояние квазара после того , как РѕРЅ излучил такое чудовищное количество энергии , должно отличаться РѕС‚ первоначального . Р’РѕРїСЂРѕСЃ РІ том , является ли источником энергии гравитация - РЅРµ произошел ли гравитационный коллапс квазара , переход РІ РёРЅРѕРµ гравитационное состояние ? Рли это мощное излучение вызвано ядерной энергией ? Никто РЅРµ знает . Р’С‹ скажете : “А может быть , закон сохранения энергии несправедлив ?” Нет
, когда явление исследовано так мало , как квазар ( квазары настолько далеки , что астрономам нелегко их увидеть ) , и как будто бы противоречит основным законам основным законам , обычно оказывается , что не закон ошибочен , а просто мы недостаточно знаем явление .
Другой интересный пример использования закона сохранения энергии- реакция распада нейтрона на протон , электрон и антинейтрино . Сначала думали , что нейтрон превращается в протон и электрон . Но когда измерили энергию всех частиц , оказалось , что энергия протона и электрона меньше энергии нейтрона . Возможны были два объяснения . Во–первых , мог быть неправильным закон сохранения энергии . Бор предположил , что закон сохранения выполняется только в среднем , статистически . Но теперь выяснилось , что правильно другое объяснение : энергии не совпадают потому , что при реакциях возникает еще какая –то частица – частица , которую мы называем теперь антинейтрино . Антинейтрино уносит с собой часть энергии . Вы скажете , что антинейтрино , мол , только для того и придумали , чтобы спасти закон сохранения энергии . Но оно спасает и многие другие законы , например закон сохранения количества движения , а совсем недавно мы получили прямые доказательства , что нейтрино действительно существует .
Ртот пример очень показателен . Почему Р¶Рµ РјС‹ можем распространять наши законы РЅР° области , РїРѕРґСЂРѕР±РЅРѕ РЅРµ изученные ?
Почему мы так уверены , что какое-то новое явление подчиняется закону сохранения энергии , если проверяли закон только на известных явлениях ? Время от времени вы читаете в журналах , что физики убедились в ошибочности одного из своих любимых законов . Так , может быть , не нужно говорить , что закон выполняется там , куда вы еще не заглядывали , вы ничего не узнаете . Если вы принимаете только те законы , которые относятся уже к проделанным опытам , вы не сможете сделать никаких предсказаний . А ведь единственная польза от науки в том , что она позволяет заглядывать вперед , строить догадки . Поэтому мы вечно ходим , вытянув шею . А что касается энергии , она , вероятнее всего , сохраняется и в других местах .
Теория удара .
Поскольку моя работа имеет отношение к действию закона сохранения энергии при ударе , рассмотрим теорию удара .
Явление удара . Движение твердого тела , происходящее под действием обычных сил , характеризуется непрерывным изменением модулей и направлений скоростей его точек . Однако встречаются случаи , когда скорости точек тела , а следовательно , и количество движения твердого тела , за ничтожно малый промежуток времени получают конечные изменения .
Явление , при котором за ничтожно малый промежуток времени скорости точек тела изменяются на конечную величину , называется ударом .
Примерами этого явления могут служить : удар мяча о стену
, удар кия и биллиардный шар , удар молота о болванку , лежащую на наковальне , бабы копра о сваю и ряд других случаев .
Конечное изменение количества движения твердого тела или материальной точки за ничтожно малый промежуток времени удара происходит потому , что модули сил , которые развиваются при ударе , весьма велики , вследствие чего импульсы этих сил за время удара являются конечными величинами . Такие силы называются мгновенными или ударными .
Действие ударной силы н материальную точку . Рассмотрим материальную точку М , движущуюся под действием приложенных к ней сил . Равнодействующую этих сил ( конечной величины ) обозначим Рк
. Предположим , что в некоторый момент t1 на точку М , занимавшую положение В дополнительно начала действовать ударная сила Р, прекратившая свое действие в момент t2= t1 + ? , где ? - время удара .
Определим изменение количества движения материальной точки за промежуток времени ?. Обозначим S и S1 импульсы сил Ри Рк, действовавшие на точку за время ? .
По теореме изменения количества движения материальной точки
mv2 – mv1 = S + Sк
( 1 )
Рмпульс SРє силы Р Рє Р·Р° ничтожно малый промежуток времени
? будет величиной того Р¶Рµ РїРѕСЂСЏРґРєР° малости, что Рё ?. Рмпульс Р¶Рµ S ударной силы Р Р·Р° это время является величиной конечной. Поэтому импульсом SРє ( РїРѕ сравнению СЃ импульсом S ) РјРѕР¶РЅРѕ пренебречь .
Тогда уравнение ( 1 ) примет вид mv2 – mv1 = S
( 2 ) или v2 – v1 = S/m
( 3 )
Уравнение ( 3 ) показывает , что скорость v2 отличается от скорости v1 на конечную величину S / m . Ввиду того , что продолжительность удара ? ничтожно мала , а скорость точки за время удара мала и им можно пренебречь .
В положении В точка получает конечное изменение скорости от v1 до v2 . Поэтому в положении В , где действовала ударная сила
, происходит резкое изменение траектории точки АВD . После прекращения действия ударной силы точка движется снова под действием равнодействующей Рк ( на участке ВD ) .
Таким образом , можно сделать следующие выводы о действии ударной силы на материальную точку :
1) действием не мгновенных сил за время удара можно пренебречь .
2) перемещение материальной точки за время удара можно не учитывать
.
3) результат действия ударной силы на материальную точку выражается в конечном изменении за время удара вектора ее скорости , определяемом уравнением ( 3 ) .
Практическая часть.
Рспытание прочности древесины РЅР° удар .
При испытании материалов на удар используется закон сохранения механической энергии . Само испытание основано на том , что работа , нужная для разрушения материала , равна изменению потенциальной энергии падающего на образец тяжелого маятника .
Рспытательные устройства , которые служат для этого называют вертикальными маятниковыми копрами .
Для демонстрации испытания прочности образца при ударе собирают установку: в верхней части двух штативов закрепляют зажимы, в углублениях, на которых кладут металлическую трубку с отверстиями посередине. В них плотно вставляют металлический стержень для маятника. На нижний конец стержня насаживают диск массой 1,9 кг. На трубку надевают деревянную рамку так , чтобы она могла поворачиваться вокруг горизонтальной оси с некоторым трением .
Между штативами помещают испытуемый образец – деревянный брусок , вырезанный поперек волокон и сильно отклоняют маятник
( измерительной линейкой определяя высоту его поднятия ) и отпускают . Брусок ломается , а маятник после удара поднимается на некоторую высоту , поварачивая рамку . Заметив положение рамки можно определить высоту поднятия маятника после удара . Разность потенциальных энергий маятника до и после удара дает работу , которая затрачена на разрушение материала . Чтобы определить ударную вязкость надо эту работу разделить на площадь поперечного сечения испытуемого образца . При этом прочность на удар во многом зависит от температуры , влажности и некоторых других условий .
Анализ практических исследований .
Проведенные практические исследования , состоящие из 6 серий опытов ( причем каждая серия включала в себя по два опыта с одинаковыми начальными параметрами ( условиями ) : высота поднятия маятника до опыта , h ; температура испытуемого образца , площадь поперечного сечения ) , позволяют выявить ряд закономерностей , которые могут найти обширное применение в технике .
Зависимость между значением ударной и температурой можно вывести из следующих соображений :
?1 = ( Р°10 - Р°0 ) / Р°10 = 3,1 %
?2 = ( Р°0 - Р°-10 ) / Р°0 = 6,3 % ( 1 )
?3 = ( Р°-10 - Р°-20 ) / Р°-10 = 12,5 %
Ударная вязкость вычисляется по формуле : аn = А / S = mg( h1 – h2 ) / S = mg?h / S ( 2
)
РР· таблицы, которая приведена РЅРёР¶Рµ РІРёРґРЅРѕ , ударная вязкость зависит РѕС‚ температуры образца . Выведем зависимость между значением ударной вязкости Рё температурой :
1) Примем за точку отсчета t° = 10°C ( в принципе можно взять и другую температуру ) .
2) РР· вышеприведенных вычислений , следует что разность между значениями ударной вязкости РїСЂРё РґРІСѓС… разных температурах ( 10В° Рё
0° ) составляет примерно 3 % .
3)Тогда выражение ( 2 ) можно представить в следующем виде : аn ( t ) =( mg?h / S ) · ( 1 ± bn )
( 3 ) , где mg?h / S = а10 = const , обозначим ее буквой г . bn – член геометрической прогрессии , выражающий сущность зависимости изменения значений аn ( t ) от температур ; bn = k ·2n-1 , где k – 0,03 ( см. пункт 2 ) при г = а10 ; n – показатель степени , равный отношению | ?t | / 10 , где ?t = t –
10 , т.е. b|?t|/10 = 0,03 · 2(?t/10-1) знак “плюс” или “минус” ставятся в случаях соответственного повышения ( понижения ) температуры по сравнению с начальной ( 10єC
) . исходя из этого выражения ( 3 ) примет вид : аn(?tє) = г - г·0,03·2(?t/10-1)= г - г·0,03/2·2|?t|/10=
=Рі - 0,015В· Рі В· 2|?t|/10 ( 4
) аn (?tє) = г – 0,015 г ·2|?t|/10 ( 4а ), при понижении температуры аn (?tє) = г + 0,015 г ·2|?t|/10 ( 4б ), при повышении температуры
Определение погрешности вычислений. аn = mg?h / S = mg ( h1 - h2 ) / S
?h1Т‘ = 0,01 (
?h2Т‘ = 0,025 ( 6
?h3Т‘ = 0,01 ( ?hcСЂ =? ?hi / 6 = 0,01
?h4Т‘ = 0,01 | n=1
?h5Т‘ = 0,005 |
?h6Т‘ = 0,005 (
аn = mg ( h1 – h2 ) ± mg ?hґср / S аn = а ± 291 Дж/мІ
Погрешность вычислений при 50є( ?t (-50є не превышает 5 % , следовательно вычисления можно считать достоверными .
Следует отметить , что функция аn ( ?tє ) является показательной , причем lim г ( 1 – 0,015·2 |?t|/10 ) = 0
?t>-50?
Отсюда следует , что РїСЂРё понижении температуры РІ 5 раз РїРѕ сравнению СЃ первоначальной древесины имеет крайне РЅРёР·РєСѓСЋ ударной вязкость . РџСЂРё ?t( -50С” зависимость Р°n( ?tС” ) будет иметь несколько РґСЂСѓРіРѕР№ РІРёРґ , чем РІ выражении ( 4 ) . РР· – Р·Р° широкого диапазона температур Рё РіСЂРѕРјРѕР·РґРєРёС… Рё трудных вычислений РјС‹ РЅРµ исследуем эту зависимость .
Свойства древесины . Механические свойства древесины не одинаковы в разных направлениях волокон и зависят от различных факторов ( влажности , температуры , объемного веса и др. ) . При испытании механических свойств древесины учитывают ее влажность и результаты испытаний пересчитываются на 15 % -ную влажность по формуле
( справедлива в пределах от 8 до 20 % влажности )
D15 = D? [1 + a ( W – 15 ) ] , где D15 - величина показателя механических свойств древесины при влажности 15 % ; D? - то же при влажности в момент испытания ;
W – влажность образца в момент испытания в % ; a – поправочный коэффициент на влажность .
При сжатии вдоль волокон : сосны , кедра , лиственницы , бука
, ясеня , ильмы и березы а = 0,05 ; ели , пихты сибирской , дуба и прочих лиственных пород а = 0,04 ; при растяжении вдоль волокон лиственных пород а = 0,015 ( для древисины хвойных пород а не учитывается ) ; при статическом изгибе ( поперечном – тангентальном ) всех пород а =0, 04 ; при скалывании а = 0,05.
С увеличением влажности от нуля до точки насыщения волокон показатели механических свойств древесины уменьшаются . При увеличении влажности на 1 % предел прочности при сжатии вдоль волокон уменьшается на 4 – 5 % в зависимости от породы . Влияние влажности на предел прочности при растяжении вдоль волокон и на модуль упругости очень мало , а на сопротивление ударному изгибу - вовсе не учитывается .
В пределах от точки насыщения волокон и выше изменение влажности не влияет на механические свойства древесины .
С возрастанием температуры прочные и упругие свойства древисины понижаются . Предел прочности при сжатии вдоль волокон при температуре +80єС составляет около 75 % , при растяжении вдоль волокон ? 80 % , скалывании вдоль волокон ( тангентальная плоскость )
?50 % и сопротивление ударному изгибу ? 90 % от величины этих свойств при нормальной температуре ( + 20єС ) .
С понижением температуры прочные характеристики древесины возрастают . При температуре - 60єС пределы прочности при скалывании
, растяжении и сжатии вдоль волокон и сопротивление ударному изгибу составляют соответственно 115 ; 120 ; 145 и 200 % от величины этих свойств при температуре +20єС .
Практическое применение результатов опыта.
Законы сохранения находят широкое применение в технике : машиностроение , судостроение , аппаратостроение . Применение в любой отрасли производства , где необходимо учитывать ряд механических свойств материала и динамику их изменения , при расчетах используется закон сохранения энергии .
Таким образом , решается немалая часть задач , связанных с проектированием высококачественного , эффективного , износостойкого и самое главное – ценного , но в то же время экономичного оборудования .
Так , например , при конструировании ряда ДВС для судов ( в основном это дизели ) учитывается вредное воздействие поршня на стенки цилиндровой втулки , связанное с ударными нагрузками . При расчете толщины этих стенок для обеспечения износостойкости решается ряд инженерных задач по определению ударной вязкости , исходя из закона сохранения энергии .
В качестве второго примера можно привести огромное значение ударной вязкости при расчете усталостного разрушения направляющих лопаток реактивной турбины в паротурбинных установках .
При ударе об полость лопатки массы перегретого пара происходит износ поверхности работающих лопаток . Для его уменьшения делается расчет на износоспособность , в ходе которого опять таки делается упор на определение ударной .
Заключение .
Целью данной работы являлось проверить и применить на практике закон сохранения энергии , попытаться вывести ряд зависимостей между параметрами окружающих условий и более детально рассмотреть одно из важных механических свойств материалов – ударную вязкость и найти закономерность ее изменения с изменением окружающих условий. Надеюсь , что эта цель достигнута .